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Abstract. Simple necessary optimality conditions are formulated for a function f of the form f =
g � h, where g and h are nonsmooth functions. Related sufficient conditions are given for local
minimization and global minimization.
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1. Introduction

There is an abundance of problems which involve difference functions. We call a
function f : X ! R on a normed vector space (n.v.s.) a difference function if it
has a decomposition of the form

f = g � h (1)

with g : X ! R; h : X ! R. Although there exist tools for handling sums and
differences of extended reals (see Moreau [10]) we limit our study to the present
case for the sake of simplicity. Such functions are of interest when g is convex and
h is differentiable [9, 22] or when g and h are both convex. In that case one says
that f is a d.c. function.

For instance, if one maximizes a convex function h over a convex subsetC , one
may introduce f = g � h, where g = iC is the indicator function of C(iC(x) = 0
for x 2 C; iC(x) = 1 otherwise), and minimize f .

Also, it has been observed by Asplund [1] that the square d2
C of the distance

function dC to an arbitrary closed subset C of a Hilbert space, given by dC(x) =
infy2C kx� yk, is a d.c. function

1
2d

2
C(x) =

1
2kxk

2 �
�
iC + 1

2k � k
2
��

(x);

where iC is the indicator function of C (given by iC(x) = 0 if x 2 C;+1
otherwise) and f� is the convex conjugate of f .

Such functions also appear in the study of favorable classes [3, 15, 19].
Let us note that one disposes of duality results for the class of d.c. functions

which make this class very attractive (see, for example, [6, 18, 23–25, 27 and 28]).

icpc; PIPS No.: 149374 MATHKAP
jogo382.tex; 30/06/1998; 13:20; v.7; p.1



374 JEAN-PAUL PENOT

Moreover, efficient algorithms have been devised for problems involving such
functions (see [24, 25 and 29] and references therein).

Here we do not impose a priori convexity or differentiability assumptions on
g and h. Then it may be objected that such a decomposition is spurious. Still
the structure of the problem at hand may strongly suggest to take into account a
decomposition as in (1). This is the case if, for instance, g and h are suprema of
finite families of functions of class C1. More generally, it is the case when both
g and h are tangentially convex, i.e. when their lower (or contingent) directional
derivatives are convex. Another case in which such a decomposition appears in
a natural way is when f is deduced from a given bifunction l : X � Y ! R by
f(x; y) := l(x; y0)� l(x0; y), so that the point (x0; y0) 2 X � Y is a saddle point
of l iff it is a minimizer of f (with value 0).

The present paper focuses on optimality conditions.
For this aim we use simple and classical concepts of nonsmooth analysis, i.e.,

contingent and Fréchet subdifferentials which coincide in finite dimensions and
which are among the most basic tools of nonsmooth analysis. As they do not enjoy
a rich calculus, they are often considered as non proper tools. Let us note however
that in a large class of Banach spaces they satisfy fuzzy calculus rules [5, 8, 11]
and a Mean Value Theorem (see [16] and references therein). It is the purpose of
this note to show that these rough subdifferentials may surprisingly serve to devise
simple and useful optimality conditions for difference functions. Let us observe
that the optimality conditions we give here are local, even when g andh are convex.
Thus, they can be used as a first step paving the way for global conditions ([7], for
instance) for which concrete testing may be involved or costly.

We note that under generalized convexity properties these conditions become
global conditions.

2. First order conditions

In the sequel X is a normed vector space with dual X�. Its closed unit ball is
denoted by B and the closed unit ball ofX� is denoted by B�. Recall that x� 2 X�

is an element of the firm (or Fréchet) subdifferential @�f(x) of a function f at
x 2 X if for each " > 0 there exists � > 0 such that for each x in the ball B(x; �)
with center x and radius � one has

f(x) > f(x) + hx�; x� xi � "kx� xk: (2)

Our first result is an immediate consequence of this definition. It coincides with a
well-known result when g and h are convex since then @�h(x) and @�g(x) are the
subdifferentials of convex analysis.

PROPOSITION 2.1. If x is a local minimizer of f = g � h then

@�h(x) � @�g(x):
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Proof. For some � > 0 and each x in the ball B(x; �) with center x and radius
� we have f(x) > f(x) hence,

g(x) := g(x) + h(x) > h(x) := h(x) + g(x)

and g(x) = h(x). As @�h(x) = @�h(x) and @�g(x) = @�g(x), the result follows
from the obvious inclusion @�h(x) � @�g(x). E

The following conditions can be proved similarly (when g and h are convex,
see [23]). They are formulated in terms of the contingent derivative given by

h0(x; v) = lim inf
t#0;u!v

1
t
(h(x+ tu)� h(x)) (3)

and of the contingent subdifferential defined by

@h(x) := fx� 2 X� : x� 6 h0(x; :)g: (4)

PROPOSITION 2.2. If x is a local minimizer of f = g � h then

h0(x; v) 6 g0(x; v) for each v 2 X; (5)

@h(x) � @g(x): (6)

The preceding inclusions can be deduced from the obvious general necessary
condition 0 2 @f(x) (respectively 0 2 @�f(x)). It suffices to observe that g =

f + h, so that one has @f(x) + @h(x) � @g(x) (and a similar inclusion with the
Fréchet subdifferential), hence,

@f(x) � @g(x)
�
� @h(x); (7)

where for two subsets A;B of X� one denotes by

A
�
� B := fx� 2 X� : x� +B � Ag (8)

their star difference.
Analogous inequalities hold for the incident derivative (or upper epi-derivative)

hi given by

hi(x; v) = sup
">0

lim sup
t#0

inf
u2B(v;")

1
t
(h(x + tu)� h(x));

for the lower hypoderivative given by

h\(x; v) = �(�h)i(x; v)

and the upper hypoderivative given by

h](x; v) = �(�h)0(x; v) = lim
t#0

sup
u!v

1
t
(h(x = tu)� h(x)):
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Similarly, one can use the lower and upper radial derivatives given respectively
by

h0r(x; v) = lim inf
t#0

1
t
(h(x+ tv)� h(x))

h]r(x; v) = �(�h)0r(x; v) = lim sup
t#0

1
t
(h(x+ tv)� h(x)):

More generally, if f ? denotes a derivative of f of some sort which is homotone
in the sense that g?(x; v) > h?(x; v) whenever g > h and g(x) = h(x), then one
has the necessary condition g?(x; v) > h?(x; v) for each v in X and the related
inclusion for the subdifferential @? associated with this derivative.

In the sufficient condition which follows one says that h is semi-differentiable
at x if h0(x; v) = h](x; v) for each v 2 X .

PROPOSITION 2.3. Suppose X is finite dimensional, f is finite at x and h is
semi-differentiable at x. If

h0(x; v) < g0(x; v) for each v 2 Xnf0g; (9)

then x is a local strict minimizer of f . The same conclusion holds if h0(x; :) is
convex and finite and if

@h(x) � int @g(x): (10)
Proof. Suppose on the contrary that there exists a sequence (xn) with limit

x such that xn 6= x and f(xn) 6 f(x) for each n. Let us set tn = kxn � xk,
vn = t�1

n (xn�x). Without loss of generality we may suppose that (vn) converges
to some unit vector v. As for each n

g(x+ tnvn)� g(x) 6 h(x+ tnvn)� h(x);

dividing by tn and taking limits we get

g0(x; v) 6 h](x; v);

which is in contradiction with our assumption. If (10) holds and h0(x; :) is convex
and finite, hence continuous, for each v 2 Xnf0g we can find x� 2 @h(x) such
that hx�; vi = h0(x; v). As there exists " > 0 with x� + "B� � @g(x) we have

g0(x; v) > sup
u�2B�

hx� + "u�; vi = h0(x; v) + "kvk

and we are back to our first assumption. 2

COROLLARY 2.4. SupposeX is finite dimensional, f is finite atx andh is convex.
If

@h(x) � int @g(x)

then x is a local strict minimizer of f .

jogo382.tex; 30/06/1998; 13:20; v.7; p.4



MINIMIZATION OF DIFFERENCE FUNCTIONS 377

Proof. As h is finite, by our standing assumption, and convex, it is locally
Lipschitzian, so that h0(x; :) is convex and finite and the preceding proposition
applies since h is semi-differentiable at x. 2

The assumptions of the preceding proposition have to be reinforced in the
infinite dimensional case. Let us say that the function g has a firm lower derivative
at x if

lim inf
kvk&0

kvk�1(g(x+ v)� g(x)� g0(x; v)) > 0:

We also say that h has a firm upper derivative at x if �h has a firm lower derivative
at x.

PROPOSITION 2.5. Suppose g (respectively h) has a firm lower (respectively
upper) derivative at x. Then each of the following conditions suffices to ensure that
x is a strict local minimizer of f :
(a) there exists some " > 0 such that g0(x; v) > h0(x; v) + "kvk for each v 2 X;
(b) h0(x; :) is convex and there exists " > 0 such that

@h(x) + "B� � @g(x): (11)
Proof. Let us first observe that Assumption (b) implies Assumption (a) since for

each v 2 X we have h0(x; v) = supx�2@h(x)hx
�; vi under our hypothesis, hence,

g0(x; v) > sup
x�2@g(x)

hx�; vi > sup
x�2@h(x)

hx�; vi+ sup
u�2"B�

hu�; vi

= h0(x; v) + "kvk:

Now Assumption (a) ensures the existence of some � > 0 such that for v 2 �Bnf0g
one has

g(x + v) > g(x) + g0(x; v) � ("=2)kvk;

�h(x+ v) > �h(x)� h0(x; v) + ("=2)kvk;

and the result follows by adding the respective sides of these relations. E

The conditions of the following global sufficient condition are reminiscent to
the notion of invexity to which a number of papers have been devoted during the
last few years. When v� takes its values into @f(x), it reduces to this notion.

PROPOSITION 2.6. Let x 2 X . Suppose there exist mappings x 7! v(x) and
x 7! v�(x) from X into X and X�, respectively, such that

g(x+ x) > g(x) + hv�(x); v(x)i

h(x+ x) 6 h(x) + hv�(x); v(x)i:

Then x is a global minimizer of f .
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The proof is immediate. Note that for g convex and h concave differentiable one
can take v(x) = x�x; v�(x) = h0(x) when the necessary condition of Proposition
2.2 is satisfied.

3. Second order conditions

Let us introduce some classical second order notions. The lower parabolic second
derivative of h at x in the directions v, w is

�h(x; v; w) = lim inf
t#0
z!w

2
t2

�
h

�
x+ tv +

1
2
t2z

�
� h(x)� h0(x; v)

�
;

this notion, introduced in [12] and [13], is a variant of the genuine parabolic second
derivative first given in [2].

The lower second epi-derivative of h at x; x� is given by

h00(x; x�; v) = lim inf
t#0
u!v

2
t2

(h(x+ tu)� h(x)� hx�; tui)

(see [20] and [21]). Some relationships between these two derivatives are given
in [21], [4] and [13]. The proofs of the following two results are similar to the
proofs of Proposition 2.1 and 2.2, respectively. Here, Ls(X;X�) denotes the space
of linear symmetric operators from X into X�.

PROPOSITION 3.1. Suppose x is a local minimizer of f . Then for each v 2 X
one has g0(x; v) > h0(x; v) and if equality holds one has for each w 2 X

�g(x; v; w) > �h(x; v; w):

Moreover, @h(x) � @g(x) and for each x� 2 @h(x) one has

g00(x; x�; v) > h00(x; x�; v) for each v 2 X:

In the following proposition we use the set @2h(x; x�) of firm subhessians of h
at (x; x�) which is the set of A 2 L2

s(X;X�) such that

lim inf
x!0
x6=0

1
kxk2

�
h(x+ x)� h(x)� hx�; xi �

1
2
hAx; xi

�
> 0:

(see [14]). This statement is a second order version of Proposition 2.1. Its proof is
immediate.

PROPOSITION 3.2. Suppose x is a local minimizer of f . Then for each x� 2 X�

the set of firm subhessians of h at (x; x�) is contained in the set @2g(x; x�) of firm
sub-hessians of g at (x; x�).
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A second order sufficient condition can be given along the lines of Proposition
2.5. Here we use the second order upper hypoderivative h]] of h given by h]] :=
�(�h)00 and we say that h is twice semi-differentiable at (x; x�) if for each v 2 X
we have

h00(x; x�; v) = h]](x; x�; v) := lim sup
t#0
u!v

2
t2

(h(x+ tu)� h(x)� hx�; tui);

or, in other terms, if 2t�2(h(x + tu) � h(x) � hx�; tui) ! h00(x; x�; v) as
t # 0; u ! v.

PROPOSITION 3.3. Suppose X is finite dimensional and g0(x; v) > h0(x; v) for
each v 2 X . If for each v 2 Xnf0g such that g0(x; v) = h0(x; v) there exists some
x� 2 @h(x) such that

g00(x; x�; v) > h00(x; x�; v);

and if h is twice semi-differentiable at (x; x�) then x is a strict local minimizer of
f .

Proof. Suppose again there exists a sequence (xn) in Xnf0g with limit x
such that f(xn) 6 f(x). Let xn = x + tnvn with tn = kxn � xk; we may
suppose (vn) ! v for some v 6= 0. Then we have g0(x; v) 6 h0(x; v), hence,
g0(x; v) = h0(x; v). Let x� be associated to v such that g00(x; x�; v) > h00(x; x�; v).
Then, as h00(x; x�; v) = h]](x; x�; v), for n large enough we have

g(x+ tnvn)� g(x) > h(x+ tnvn)� h(x):

which is in contradiction with f(x+ tnvn) 6 f(x). E

Note that, when h is semi-differentiable, our assumptions ensure that f 00(x; 0; v)
is positive for each non null vector v, a sufficient optimality condition, even when
one does not know that 0 2 @f(x).

In the following obvious result a notion of sinvexity (or second order invexity)
is introduced.

Here, a family (gi)i2I of functions is said to be simultaneously sinvex if there
exist mappings x 7! v(x), x 7! v�(x), x 7! A(x) from X into X;X�; Ls(X;X�)

respectively such that for each i 2 I and for each x 2 X

gi(x+ x) > gi(x) + hv�(x); v(x)i + 1
2hA(x)v(x); v(x)i:

Then one says that (gi)i2I is sinvex with respect to v(:); v�(:); A(:). If the family
is reduced to a single member g one says that g is sinvex. When one can takeA = 0
one says that g is invex.

PROPOSITION 3.4. Let x 2 X . Suppose the family fg;�hg is simultaneously
sinvex. Then x is a global minimizer of f .
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The proof is obvious. Let us note that the Taylor formula ensures that both condi-
tions are satisfied if h is quadratic and g is quadratic or convex with h0(x) 2 @g(x),
h00(x) 2 @2g(x; h0(x)). It suffices to take v(x) = x � x; v�(x) = h0(x); A(x) =

h00(x).

4. Conclusion

Our study has taken the decomposition (1) into account as much as possible. Let
us note that this decomposition suggests to introduce a notion of pseudo-critical
point: x is said to be a pseudo-critical point of f if

0 2 @g(x)
�
� @h(x):

This notion is weaker than the notion of critical point requiring 0 2 @f(x).
However, when X is a Banach space, h is convex lower semicontinuous or if
h0(x; �) = h�(x; �) and h is tangentially convex, both notions coincide, as is easily
seen.

In general the inclusion

@f(x) � @g(x)
�
� @h(x)

is strict, as the following example shows.
Let X = R and let f; g; h be given by f(x) = jxj sin2 x, g(x) = jxj,

h(x) = jxj cos2 x. Then @f(0) = @h(0) = f0g, @g(0) = [�1; 1] and @f(0) 6=
@g(0) �–@h(0).

Since g and h may have a special structure (for instance be convex) it may be
easier to deal with such a notion than with the genuine notion of critical point. We
are thus lead to the following Palais-Smale condition:

(PSd:c:) Any sequence (xn) such that (f(xn)) converges and there exists x�n 2

@g(xn)
�
� @h(xn) with (kx�nk) ! 0 has a converging subsequence.

THEOREM 4.1. SupposeX is an Asplund space, f = g�h is lower semicontinu-
ous, bounded below and satisfies condition (PSd:c:). Then f is coercive and attains
its infimum.

Proof. It suffices to observe that Condition (PSd:c:) implies the Palais-Smale
condition of [17] and to apply the results of that paper. E
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