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Abstract. Simple necessary optimality conditions are formulated for afunction f of the form f =
g — h, where g and h are nonsmooth functions. Related sufficient conditions are given for local
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1. Introduction

There is an abundance of problems which involve difference functions. We call a
function f : X — R on anormed vector space (n.v.s.) a difference function if it
has a decomposition of the form

f=9-h D)

withg : X — R,h : X — R. Although there exist tools for handling sums and
differences of extended reals (see Moreau [10]) we limit our study to the present
case for the sake of simplicity. Such functions are of interest when ¢ is convex and
h is differentiable [9, 22] or when g and h are both convex. In that case one says
that f isad.c. function.

For instance, if one maximizesaconvex function i over aconvex subset C', one
may introduce f = g — h, where g = i istheindicator function of C'(ic(xz) =0
forz € C,ic(x) = oo otherwise), and minimize f.

Also, it has been observed by Asplund [1] that the square d2, of the distance
function d¢ to an arbitrary closed subset C' of a Hilbert space, given by d¢(z) =
inf,cc ||z — yl|, isad.c. function

12 (x) = YIal|2 = (ic+ 31 12) (@),

where i¢ is the indicator function of C' (given by ic(z) = 0if x € C, 4+
otherwise) and f* isthe convex conjugate of f.

Such functions also appear in the study of favorable classes[3, 15, 19].

Let us note that one disposes of duality results for the class of d.c. functions
which makethis class very attractive (see, for example, [6, 18, 23-25, 27 and 28]).
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Moreover, efficient algorithms have been devised for problems involving such
functions (see [24, 25 and 29] and references therein).

Here we do not impose a priori convexity or differentiability assumptions on
g and h. Then it may be objected that such a decomposition is spurious. Still
the structure of the problem at hand may strongly suggest to take into account a
decomposition asin (1). Thisis the case if, for instance, g and h are suprema of
finite families of functions of class C. More generally, it is the case when both
g and h are tangentially convex, i.e. when their lower (or contingent) directional
derivatives are convex. Another case in which such a decomposition appears in
anatural way iswhen f is deduced from a given bifunction/ : X x Y — R by
f(z,y) = 1(z,y0) — l(z0,y), SO that the point (zo, yo) € X x Y isasaddle point
of [ iff itisaminimizer of f (with value 0).

The present paper focuses on optimality conditions.

For this aim we use simple and classical concepts of nonsmooth analysis, i.e.,
contingent and Fréchet subdifferentials which coincide in finite dimensions and
which are among the most basic tools of nonsmooth analysis. Asthey do not enjoy
arich calculus, they are often considered as non proper tools. L et us note however
that in alarge class of Banach spaces they satisfy fuzzy calculus rules [5, 8, 11]
and aMean Value Theorem (see [16] and references therein). It is the purpose of
this note to show that these rough subdifferentials may surprisingly serveto devise
simple and useful optimality conditions for difference functions. Let us observe
that the optimality conditionswe give herearelocal, evenwhen g and b are convex.
Thus, they can be used as afirst step paving the way for global conditions ([7], for
instance) for which concrete testing may be involved or costly.

We note that under generalized convexity properties these conditions become
global conditions.

2. First order conditions

In the sequel X is a normed vector space with dual X*. Its closed unit ball is
denoted by B and the closed unit ball of X* isdenoted by B*. Recall that 7% € X*
is an element of the firm (or Fréchet) subdifferential 9~ f(z) of a function f at
7 € X if for each e > Othere exists § > 0 such that for each = in the ball B(z, )
with center 7 and radius § one has

flz) > [(@) +(z" 2 —7) — ez — 7. )

Our first result is an immediate consequence of this definition. It coincides with a
well-known result when g and h are convex sincethen 9~ h(z) and 9~ g(x) arethe
subdifferentials of convex analysis.

PROPOSITION 2.1. If 7 isalocal minimizer of f = g — h then
0 h(Z) C 0 g(=).
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Proof. For some p > 0 and each z inthe ball B(Z, p) with center 7 and radius
pwehave f(z) > f(z) hence,

g(z) = g(z) + h(T) > h(z) = h(z) + g(T)
andg(z) = h(Z).AsO h(Z) = 0 h(Z) and 0 ¢(T) = 0 §(T), theresult follows

from the obviousinclusion 9~ h(Z) C 9~ g(Z). O

The following conditions can be proved similarly (when g and /h are convex,
see [23]). They are formulated in terms of the contingent derivative given by

1
e N i L= e
hi(@,v) = liminf = (h(z + tu) — h(z)) ©)
and of the contingent subdifferential defined by
oh(Z):={z" e X*:7* <h'(z,.)} (4)

PROPOSITION 2.2. If Z isalocal minimizer of f = g — h then
h'(Z,v) < ¢'(z,v) for eachv € X, (5)
Oh(Z) C 0¢(T). (6)

The preceding inclusions can be deduced from the obvious general necessary
condition 0 € 9f(Z) (respectively 0 € 0~ f(z)). It suffices to observe that g =
f + h, sothat onehas 0f (Z) + 0h(Z) C dg(z) (and a similar inclusion with the
Fréchet subdifferential), hence,

0f (z) C 9g(z) — Oh(z), )
where for two subsets A, B of X™* one denotes by
ASB:={" € X" 2" +BC A} 8)

their star difference.
~ Analogousinequalitieshold for theincident derivative (or upper epi-derivative)
h* given by

(@) = splimeupinf % (h(@ + tu) — h(T)),

for the lower hypoderivative given by
W(E,v) = —(—h)! (T, v)

and the upper hypoderivative given by

E(F,0) = ~(=h)'(z,) = lim sup % (W(T = tu) — h(T)).
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Similarly, one can use the lower and upper radial derivatives given respectively
by

B (@) = limin % (h(Z + tv) — h(T))

hi(z,v) = —(—h).(F,v) = limsup % (W(T + tv) — h(zT)).
10

More generally, if f? denotes a derivative of f of some sort which is homotone
in the sense that ¢°(%,v) > h’(Z,v) whenever g > h and g(Z) = h(z), then one
has the necessary condition ¢°(%,v) > h’(Z,v) for each v in X and the related
inclusion for the subdifferential 9 associated with this derivative.

In the sufficient condition which follows one says that & is semi-differentiable
a7 if h'(z,v) = h¥(Z,v) for eachv € X.

PROPOSITION 2.3. Suppose X is finite dimensional, f is finite at # and A is
semi-differentiable at z. If

h'(Z,v) < ¢'(z,v) for eachv € X\ {0}, 9

then 7 is a local strict minimizer of f. The same conclusion holds if #'(z,.) is
convex and finite and if

Oh(Z) C intdg(T). (10)

Proof. Suppose on the contrary that there exists a sequence (z,,) with limit

Z such that =, # = and f(z,) < f(7) for eech n. Let us set t,, = ||z, — 7|,

vy =t Yz, — ). Without loss of generality we may supposethat (v,,) converges
to some unit vector v. Asfor eachn

9(T + tyvn) — 9(T) < h(T + tyv,) — h(T),
dividing by ¢,, and taking limits we get
g (@,v) < B (Z,v),

which isin contradiction with our assumption. If (10) holdsand %/(z, .) is convex
and finite, hence continuous, for each v € X'\ {0} we can find z* € Oh(Z) such
that (z*,v) = h/(Z,v). Asthereexistse > 0 with z* + ¢B* C dg(T) we have

g@v) > sup (2" +eu,v) = B'(F,0) + |[o|
u*eB*

and we are back to our first assumption. O

COROLLARY 2.4. uppose X isfinitedimensional, f isfiniteat 7 and h isconvex.
If

Oh(Z) C int 9g(T)
then Z isalocal strict minimizer of f.
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Proof. As h is finite, by our standing assumption, and convey, it is locally
Lipschitzian, so that A/(z,.) is convex and finite and the preceding proposition
appliessince h is semi-differentiable at 7. O

The assumptions of the preceding proposition have to be reinforced in the
infinite dimensional case. Let us say that the function g hasafirmlower derivative
azif

liminf ||lv|| Y(g(z + v) — g(z) — ¢'(7,v)) > 0.
imint ol (9(m +0) = 9(@) = ¢/ (7))

We also say that h hasafirm upper derivative at 7 if —h hasafirm lower derivative
az.

PROPOSITION 2.5. Suppose g (respectively k) has a firm lower (respectively
upper) derivative at Z. Then each of the following conditions sufficesto ensure that
T isadtrict local minimizer of f:
(a) thereexistssomee > 0 suchthat ¢'(z,v) > h'(Z,v) + ||v|| for eachv € X;
(b) A'(z,.) isconvex and there exists ¢ > 0 such that
Oh(T) + eB* C 0g(T). (11)

Proof. Letusfirst observethat Assumption (b) implies Assumption (a) sincefor

eachv € X wehave h'(T,v) = SUP,« oz (", v) under our hypothesis, hence,

g(@v) > sup (z%,0)> sup (z",v)+ sup (u",v)
z*€99(T) x*€Oh(T) u*EeB*
= h'(T,v) +ev].

Now Assumption (8) ensuresthe existenceof somep > Osuchthatforv € pB\{0}
one has

9@ +v) > g(7) +¢'(7,v) — (/2) |0,
—h(Z +v) > —h(@) — h(T,v) + (¢/2)|]v],

and the result follows by adding the respective sides of these relations. O

The conditions of the following global sufficient condition are reminiscent to
the notion of invexity to which a number of papers have been devoted during the
last few years. When v* takesits valuesinto df (%), it reduces to this notion.

PROPOSITION 2.6. Let T € X. Suppose there exist mappings = — v(z) and
x — v*(z) from X into X and X*, respectively, such that

Thenz isaglobal minimizer of f.
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Theproof isimmediate. Note that for g convex and h concavedifferentiable one
cantakev(z) = z — 7%, v*(x) = h'(Z) when the necessary condition of Proposition
2.2 issdtisfied.

3. Second order conditions

Let usintroduce some classical second order notions. The lower parabolic second
derivative of h a 7 in the directions v, w is

@, v.10) = limint t% <h (f-l— o + % tzz) (@) — h'(m)> :
Z—w

thisnotion, introduced in [12] and [13], isavariant of the genuine parabolic second
derivativefirst givenin [2].
The lower second epi-derivative of h at Z, Z* is given by

M= —x T E _ R Ay —
' (z,z ,U)-—'Ingﬁ 2 (h(T + tu) — h(T) — (T*, tu))
U—v

(see [20] and [21]). Some relationships between these two derivatives are given
in [21], [4] and [13]. The proofs of the following two results are similar to the
proofsof Proposition 2.1 and 2.2, respectively. Here, L(X, X*) denotesthe space
of linear symmetric operators from X into X*.

PROPOSITION 3.1. Suppose 7 is a local minimizer of f. Then for each v € X
onehasg¢'(Z,v) > h'(Z,v) and if equality holds one has for each w € X

§(T,v,w) > h(Z,v,w).

Moreover, Oh(T) C dg(Z) and for eachz* € Oh(z) one has

)
" (@, 7",v) > h"(z,z*,v) for eachv € X.

In the following proposition we use the set 9h(z, 7*) of firm subhessiansof &
a (7,7*) whichistheset of A € L2(X, X*) such that

iminf ||x1||2 W@ + 5) — h(Z) — (7", 2) — %(Ax,x) >0,
r#0

(see[14]). This statement is a second order version of Proposition 2.1. Its proof is
immediate.

PROPOSITION 3.2. Suppose isalocal minimizer of f. Then for eachz* € X*
the set of firm subhessians of & at (7, *) is contained in the set §%¢(Z, *) of firm
sub-hessiansof ¢ at (Z, 7).
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A second order sufficient condition can be given along the lines of Proposition
2.5. Here we use the second order upper hypoderivative k' of h given by A =
—(—h)" and we say that h istwice semi-differentiable at (7, z*) if for eachv € X
we have

. 2
W'z, T, v) = h¥(z, 7%, v) = limsup 73 (h(@ + tu) = h(z) — (7", tu),
tl0
U—v

or, in other terms, if 2t=2(h(% + tu) — h(z) — (T*,tu)) — K"(Z,T*,v) as
tl0,u—w.

PROPOSITION 3.3. Suppose X is finite dimensional and ¢'(z,v) > h/(z,v) for
eachv € X. If for eachv € X\{0} suchthat ¢'(z,v) = h'(Z, v) there exists some
z* € Oh(T) such that

J"(z,z*,v) > h'(Z,7%,v),

and if h is twice semi-differentiable at (7, 7*) then z isa strict local minimizer of
f.

Proof. Suppose again there exists a sequence (z,,) in X\{0} with limit =
such that f(z,) < f(Z). L&t z, = T + t,v, With ¢, = ||z, — Z||; we may
suppose (v,) — v for some v # 0. Then we have ¢'(z,v) < h'(Z,v), hence,
g (Z,v) = h'(z,v). LetT* be associated to v suchthat ¢" (Z, z*,v) > h'(Z,z*,v).
Then, as b/ (z,7*,v) = h*(Z,T*,v), for n large enough we have

9(T + thvn) — g(T) > h(T + tyv,) — h(T).

which isin contradiction with f(Z + t,v,) < f(T). 0

Notethat, when / is semi-differentiable, our assumptionsensurethat 1 (z, 0, v)
is positive for each non null vector v, a sufficient optimality condition, even when
one does not know that 0 € Of ().

In the following obvious result a notion of sinvexity (or second order invexity)
isintroduced.

Here, afamily (g;)icr Of functionsis said to be simultaneously sinvex if there
exist mappingsz — v(z), z — v*(z), r — A(x) from X into X, X*, L (X, X*)
respectively such that for eachi € I andfor eachx € X

gi(T +2) > gi(@) + (v (2),v(2)) + 3(A(x)v(2), v()).

Thenonesaysthat (g;)icr issinvex withrespecttov(.), v*(.), A(.). If thefamily
isreduced to asingle member g onesaysthat g issinvex. When onecantake A = 0
one saysthat g isinvex.

PROPOSITION 34. Let 7 € X. Suppose the family {g, —h} is simultaneously
sinvex. Then Z isa global minimizer of f.

j 0go382.tex; 30/06/1998; 13:20; v.7; p.7



380 JEAN-PAUL PENOT

Theproof isobvious. Let usnotethat the Taylor formulaensuresthat both condi-
tionsaresatisfiedif h isquadratic and g isquadratic or convex with h/(z) € dg(T),
r'"(z) € 0%g(z, W' (T)). It sufficesto take v(z) = = — T, v*(z) = W' (T), A(z) =
h'(T).

4, Conclusion

Our study has taken the decomposition (1) into account as much as possible. Let
us note that this decomposition suggests to introduce a notion of pseudo-critical
point: 7 is said to be a pseudo-critical point of f if

0 € 9g(T) — Oh(T).

This notion is weaker than the notion of critical point requiring 0 € df(%).
However, when X is a Banach space, h is convex lower semicontinuous or if
k' (z,-) = h*(%,-) and h istangentially convex, both notions coincide, asis easily
seen.

In general the inclusion

0f (%) C dg(x) — Oh(T)

is gtrict, as the following example shows.

Let X = R and let f,g,h be given by f(z) = |z|sin’z, g(z) = |z],
h(z) = |z| cos?z. Then df(0) = 0h(0) = {0}, 9g(0) = [—1,1] and 3f(0) #
9g(0)20n(0).

Since g and h may have a special structure (for instance be convex) it may be
easier to deal with such a notion than with the genuine notion of critical point. We
are thuslead to the following Palais-Smale condition:

(PS4.c.) Any sequence (z,,) such that (f(x,)) converges and there exists z;, €

0g(xy) z Oh(z,) with (]|z}||) — 0 has a converging subsequence.

THEOREM 4.1. Suppose X isan Asplund space, f = g — h islower semicontinu-
ous, bounded below and satisfies condition (PS;...). Then f is coerciveand attains
its infimum.

Proof. It suffices to observe that Condition (PS;...) implies the Palais-Smale
condition of [17] and to apply the results of that paper. O
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